九月范文网 > 作文 > 学生作文 > 六年级作文
数学小论文作文6篇 word A4格式

数学小论文作文1000字

数学小论文作文怎么写?下面我们九月范文网六年级作文频道给大家精编的6篇关于数学小论文作文,希望对大家有所帮助,内容仅供参考!

数学小论文作文1000字篇1

我家刚买了新房,装修差不多了,今天要刷墙,我们得先准备好乳胶漆。爸爸突然来了兴致,让我当测量师,测测我们需要刷漆的墙面积有多少平方米,我拿了一把卷尺就和父母上路了。 来到新家,我迫不及待地测量了起来,爸爸说:“我们要粉刷客厅和两个房间。”我拿起卷尺就想应该量哪些地方,课堂里老师说过求长方体的表面积必须知道它的长、宽、高,所以我开始量每个房间的长、宽、高。

小房间:长4.5米、宽2.2米、高2.6米,有了这些数字就好求这个小房间的面积了,哦,对了,既然是刷墙那么就不需要算地面的面积,则这五面墙的面积如下: 4.5×2.2+(2.2×2.6+4.5×2.6)×2=33.64㎡

大房间:长4.5米、宽2.5米、高2.6米,那么此房间五面墙的面积如下: 4.5×2.5+(2.5×2.6+4.5×2.6)×2=47.65㎡

再来到客厅:长4.6米、宽3.8米、高2.6米,面积如下: 4.6×3.8+(4.6×2.6+3.8×2.6)×2=61.16㎡

这么一来,粉刷的面积就显露出来了,我长吁一口气,总面积如下: 33.64+47.65+61.16=142.45㎡

哈哈,我们要买够刷142.45㎡墙面的乳胶漆,于是我和妈妈一起去买乳胶漆了,买回来后全家一起动手,将乳胶漆刷在墙壁上,墙壁是刷完了,可是为什么桶里还有多余的乳胶漆呢?真是不可思议,我可是认真测量,仔细计算的阿。爸爸微笑着说道:“仔细看看哪些地方你多算了。”我四下寻找着,思索着,到底是哪儿多算了呢?透过窗户看着外面蓝蓝的天,哦!窗户和门等地方根本不用刷乳胶漆,可想而知,实践与课堂要结合,不能光会学,不会用。 于是我测量了门、窗的尺寸。两个房间门的正反面和卫生间门面积相等:长2米、宽0.7米,客厅门:长2 米、宽0.8米,阳台门:长2.4米,宽2.3米。两个房间的窗户一样大:长1.5米,宽1.4米,客厅的窗户:长1.7米、宽1.4米。这样一来,刷乳胶漆的实际面积为: 142.45-2×0.7×5-2×0.8-2.4×2.3-1.5×1.4×2-1.7×1.4=121.75㎡

没想到测量工作这么复杂,不过,我还是经过的努力完成了这么重大的测量任务,不需要父母的指导,我独自完成了这件工作,我脸上露出了欣慰的笑容,我走到爸爸身边,告诉了爸爸我的劳动成果,爸爸竖起大拇指,抚摸着我的头赞道“儿子真不简单”我谦虚地笑了笑说“我们只要善于动脑思考,善于把数学带到生活中,善于发现问题,生活处处有数学,我们要善于使用数学,就可以将复杂的问题简单化。”爸爸点了点头:“我的儿子长大了!” 我和爸爸都“哈哈”笑了,妈妈看到我们也笑了,笑声在屋子里回荡。

数学小论文作文1000字篇2

1证明一个三角形是直角三角形

2用于直角三角形中的相关计算

3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前11XX年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

即:

c=(a2+b2)(1/2)

定理:

如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。

如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=,x=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)

来源:

毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

数学小论文作文1000字篇3

生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里……都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。

记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。妈妈告诉我,打八折就是乘以0.8,也就是元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。妈妈告诉我元元),一袋是628克,现价28元,另一袋是650克,现价32元。用所以第二袋划算一点儿,于是,我们买下了第二袋。通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。

记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用我不能当第一个报的,只能当最后一个报的,她报X个数,我就报个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。到了六年级,我也学到了这类知识,只不过,更加难了,通过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。

数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!

数学小论文作文1000字篇4

大千世界,数学无处不在。真的,只要你留心观察,善于动脑,你就觉得自己好像置身于数学的海洋。是的,数学无处不在,这个假期,我就深深地感到了这一点。

我的肚子莫名其妙地奏起了狂响曲,“好饿啊——”我呻吟道。“来,吃个苹果吧!”还是妈妈好,“但是……”“但是什么?吃个苹果,哪有什么但是啊?”我笑问道,伸手向一个又大又红的苹果抓去。谁知,妈妈一把抓住苹果,夺了过去,神秘兮兮的。我一脸茫然,妈妈这是卖哪门子的药啊?我不耐烦了“妈,别闹了,还让不让人吃啦?”妈妈还是微笑着,洗起苹果来“吃,谁说不让你吃啦,我这不是洗了吗?”“哦!”我还是一脸疑惑。“但是,我还是有一个要求。”终于说出来了,我就知道不对劲了吗。“什么要求啊?”我有点生气了,不就是吃一个苹果嘛,怎么有那么多要求啊。“你不是学过体积了吗?”“是啊,怎么了?”这根吃苹果有关吗?我心想。“那你能不能把数学知识,带到生活中去,算算这个苹果的体积呢?”妈妈又笑了笑,好像小瞧我似的,我的心里升起了一股力量,恩,我一定要做给你看!一定!

于是,我赶忙把这个令人馋涎欲滴的红苹果,拿在手里,琢磨起怎样算体积来。苹果既不是长方体,也不是正方体,更不是圆柱体,怎么算它的体积呢?我摆来摆去,没有头绪了,此时的肚子还在咕咕作响,我可不能不遵守承诺,就吃了呀,我可不能让妈妈瞧不起我呀,加油,一定还有什么好方法。于是我又鼓起勇气,忍住饥饿,继续埋头考虑起来。

过了一会儿,我终于豁然开朗,我不能用量杯,先在里面装些水,记下水位。随后把那个苹果放入水中,此时的水位上升了不少,再记下上升后的水位。最后用上升后的水位,减去先前的水位,不就算出苹果的体积了吗?我高兴极了,向妈妈汇报了实验结果,妈妈这回是满意的笑了。

我大口地啃着苹果,这正是最甜美的食物!

数学无处不在,你说是吗?

数学小论文作文1000字篇5

生活中,数学无处不在。建高楼要画几何图,发射火箭要经过无数的计算。

我们一般加减乘除都是由0~9十个数字构成的十进制的算是组成的,而电脑里却用了二进制。

我一直都想不明白,直到我做了这道题目:小明有511块糖,分别放在9个盒子里。你只要告诉他糖的块数,(不多于511),他就可将几个盒子里的糖全部拿出,凑成你要的块数,这几个盒子里各有多少块糖?

我有些丈二和尚摸不着头脑,怎样也想不出来。我只好一个一个排,排了5个后,我发现是一个很有规律的数列:1.2.4.8.16.都是这个数乘2得到下一个数的。我照着排下去:1.2.4.8.16.32.64.128.256,刚好为511,原来电脑里面有二进制是因为可以算出所有数呀!

我有看到了一种问题--“牛吃草”。一牧场上的青草匀速的生长,可供27头牛吃6天,工23头牛吃9天,18头牛吃了6天后增加了12头牛,还要几天吃完?牛吃草有原有量和增长量,一部分牛吃原来就有的草,一部分牛吃长出来的草,吃增长量的牛无论什么时候都有的吃,而吃原有量的牛吃完了就没有了,所以应先求原有量和增长量,27×=162(份),(将牛一天吃的草视为一份),23*9=207(份),207-162)÷(9-6)=15(份),增长量为15份,162-6×15=72(份),原有量为72份,18头牛吃6天,共吃72-(18-15)×6=54(份)草,54÷(3+12)=3.6(天),答:还要3.6天吃完。

书上也是可以获得知识的。书的页码也有学问。如:甲.乙两册书用了8642个数码,且甲册比乙册多20页,甲书有多少页?首先要知道1~页要1×9=9(个)数码,10~9需要2×90=180(个)数码,100~999需要2700个数码,(2700+180+9)×2 8642个,所以甲乙书都印到了四位数。20页有20×4=80(个)数码,甲书有(86742+80)÷2=4361(个)数码,4361-(9+180+270)=1472(个)数码,1472÷4=368(页),999+368=1367(页),答:甲书有1367页。

生活中,数学真是无处不在……

数学小论文作文1000字篇6

我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。

今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字……

从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。

做了这道题,我知道做数奥不能求快,要求懂它的方法。

数学小论文作文

我家刚买了新房,装修差不多了,今天要刷墙,我们得先准备好乳胶漆。爸爸突然来了兴致,让我当测量师,测测我们需要刷漆的墙面积有多少平方米,我拿了一把卷尺就和父母上路了。

上一篇:我们的七月七作文
下一篇:学国画作文
下载全文 收藏