我要投稿
  • 您当前的位置:中国教育资源网 -> 教学教案 -> 数学教案 -> 数学说课稿 -> 教案内容
  • [ 收藏本页教案 ]
  • 平行四边形的面积--说课稿

    教案作者:佚名   教案来源:不详   教案栏目:数学说课稿    收藏本页

    一、说教材

    说课内容:人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》P79-81

    小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。

    (一)教学目标

    根据新课标的要求及教材的特点,充分考虑到五年级学生的思维水平,我确立如下三维教学目标

    知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

    过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

    情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

    (二)教学重点、难点:

    教学重点:探究并推导平行四边形面积的计算公式,并能正确运用

    教学难点:平行四边形面积公式的推导方法—转化与等积变形。

    关键点:通过实践——理论——实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。

    (三)教具、学具准备:多媒体课件、平行四边形纸片、剪刀、直尺、细木条钉成的长方形、网格长方形和平行四边形

    为实现以上教学目标,突出重点,解决难点,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。

    二、学生分析:

    学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

    三、说教法、学法

    教法:

    1、发展迁移原则

    运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。

    2、学生为主体,教师为主导的教学原则

    针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。

    3、反馈教学

    为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与平行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。

    学法:

    学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习

    小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

    四、说教学程序

    为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:

    (一)、复习旧知,导入新课。

    (二)、创设情景,引出问题。

    (三)、动手实践,探究发现。

    (四)、分层训练,理解内化。

    (五)、课堂小结,巩固新知。

    下面我就分别从这五个方面说一说:

    (一)、复习旧知,渗透转化

    新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

    (二)、创设情景,引出课题

    接着,我出示一个长方形和一个平行四边形,这对好朋友发生了争论了,它们都说是自己的面积要大,你们认为谁的面积要大呢?你是怎么知道谁的面积大呢?

    通过这些问题,促使学生积极动脑猜想,长方形的面积大家会求了,平行四边形的面积如何计算呢?从而引出本节课的课题:平行四边形的面积计算(板书)

    (三)动手实践,探究发现

    1、数方格,引发猜想

    在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?通过数格子的方法,并填写表格,从表格中学生很容易观察到平行四边形的面积与长方形的面积相等。这时我启发学生猜想,是不是平行四边形的面积就是底乘高呢?刚才我们用数格子的方法来计算长方形和平行四边形的面积,但这种方法有一定的局限性,当一个平行四边形很大很大的时候,我们也采用数格子的方法来求平行四边形的面积吗?这就引发学生思考,是否有其他的方法来求平行四边形的面积呢?

    2,剪拼法,验证猜想

    心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。

    由于前面在数格子时已经有同学提到用割补的方法来求面积,所以我顺水推

    [1] [2]  下一页

    我要投稿   -   广告合作   -   关于本站   -   友情连接   -   网站地图   -   联系我们   -   版权声明   -   设为首页   -   加入收藏   -   网站留言
    Copyright © 2009 - 20012 www.chinesejy.com All Rights Reserved.中国教育资源网 版权所有